skip to main content


Search for: All records

Creators/Authors contains: "Liu, Zhipeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Software-Defined Networking (SDN) represents a major transition from traditional hardware-based networks to programmable software-based networks. While SDN brings visibility, elasticity, flexibility, and scalability, it also presents security challenges. This paper describes some of the hands-on labs we developed for teaching SDN security using the CloudLab platform. The hands-on labs have been used in a graduate level course on SDN/NFV related technologies. Our teaching experience of the hands-on labs is discussed. The hands-on labs can be adopted by other instructors to teach SDN security. 
    more » « less
  3. Abstract We present the first algorithm that samples max n ≥0 { S n − n α }, where S n is a mean zero random walk, and n α with $\alpha \in ({1 \over 2},1)$ defines a nonlinear boundary. We show that our algorithm has finite expected running time. We also apply this algorithm to construct the first exact simulation method for the steady-state departure process of a GI/GI/∞ queue where the service time distribution has infinite mean. 
    more » « less
  4. Voltage instability occurs when a power system is unable to meet reactive power demand at one or more buses. Voltage instability events have caused several major outages and promise to become more frequent due to increasing energy demand. The future smart grid may help to ensure voltage stability by enabling rapid detection of possible voltage instability and implementation of corrective action. These corrective actions will only be effective in restoring stability if they are chosen in a timely, scalable manner. Current techniques for selecting control actions, however, rely on exhaustive search, and hence may choose an inefficient control strategy. In this paper, we propose a submodular optimization approach to designing a control strategy to prevent voltage instability at one or more buses. Our key insight is that the deviation from the desired voltage is a supermodular function of the set of reactive power injections that are employed, leading to computationally efficient control algorithms with provable optimality guarantees. Furthermore, we show that the optimality bound of our approach can be improved from 1/3 to 1/2 when the power system operates under heavy loading conditions. We demonstrate our framework through extensive simulation study on the IEEE 30 bus test case. 
    more » « less